How fast can bikes go? How have bikes changed since they were invented, and why?

Bicycles
How do a bike and its rider stay up?

Peggy stays up on the science of bicycle balance.
Segement length: 6:20

Insights


In the Colorado desert in 1992, a speeder was clocked going 110 kilometers (68 miles) per hour. No ticket was issued to the driver. A lapse in law enforcement? Not at all.

The Dexter Hysol Cheetah, an experimental bicycle, had just broken the world record for human-powered speed. The Cheetah incorporated many new innovations in bicycling-a recumbent seating angle, aerodynamic fairing, and the latest lightweight materials. The result was a milestone in the annals of two-wheel transportation.

Two principles of physics explain how a bike works. First, angular momentum, the same force at work in a gyroscope, makes wheels want to keep turning in the same direction and position as they have been. So as your bike wheels spin underneath you, they're actually helping you stay upright as their angular momentum resists changes in the bike's upright position. Second, because of the way bicycles are constructed, inertia swings the upper part of a bicycle away from the center of a turn, even as the front wheel dips into the turn, keeping the bike in an upright position.

Bicycles have undergone few design changes since they were first invented. The earliest known bicycle design dates back to the 1490s, when a student of Leonardo da Vinci sketched a vehicle which looks remarkably like today's bicycle. The first functioning velocipedes of the 19th century also strongly resembled today's bikes, with two wheels of the same size. The old-fashioned bicycles most people think of with enormous front wheels and tiny back wheels were actually invented later. Called "ordinaries," these bikes were fun and fast, but quite unstable and dangerous.

Most innovations in biking happened as a result of the energy crisis of the '70s. Many of these innovations have already been incorporated into competition-class bicycles, such as aerodynamic carbon-fiber frames. Other improvements include wheels that attach on only one side, two-wheel drive for more traction, and tension wires that offer extra stability for less weight. Recumbent bicycles are also becoming popular, in part because the rider's lower center of gravity makes the bike more stable. Not only are you less likely to fall off-it's a shorter distance to the ground if you do!

Connections

1. What needs to happen for more people to use bicycles as daily transportation? What would help you make more trips on a bike?
2. The front wheel of an "ordinary" could be up to 1.5 meters (5 feet) tall, with the rider perched on a seat on top. How would this affect the stability of the ride when you compare it to a regular bicycle?

Key Words


aerodynamic designed to minimize wind resistance
angular momentum tendency of a spinning object to keep spinning with the same orientation
center of gravity point around which the entire mass of an object can equally balance
fairing bubble structure surrounding nonaerodynamic surfaces to reduce air drag
gears bicycle's driving system using cogs with teeth connected by a chain
inertia tendency of an object in motion to resist changes in direction or speed
recumbent bicycle bicycle slung low to the ground, with wheels far apart and a rider seated in a prone position between them
two-wheel drive drive assembly which diverts the pedaling force to both the back and front wheels

Resources

  1. A new bike harnesses the best of all possible wheels. (1992, Feb 29) The New York Times, p. 52.
  2. Ballantine, R. & Grant, R. (1992) Richards' ultimate bicycle book. New York: Dorling Kindersley.
  3. Dream machines. (1992, Feb) Bicycling, pp. 56-58.
  4. Evolution of a dream: From Da Vinci to Daedalus. (1988, Dec) Bicycling, pp. 68-74.
  5. Fisher, L. (1992, Aug 5) Shifting a bike with centrifugal force. The New York Times, p. D4.
  6. Korten, Tristram. (1991, Jan 21) Pedal power. Design News, pp. 111-114.
  7. McGurn, J. (1987) On your bicycle: An illustrated history of cycling. New York: Facts On File Publications.
  8. Posth, M.A. (1993, Oct) The world's fastest bike. Popular Science, pp. 78-80.
  9. Sullivan, K. (1992, July 12) Laid-back bikers love this cycle. The Washington Post, p. B1.
  10. Thisdell, D. (1992, Sept 12) For sale: The world's fastest bicycle. New Scientist, p. 23.

Additional resource

NEWTON'S APPLE Show 501 (high-speed bicycles). GPN: (800) 228-4630.

Main Activity

Get in the Right Gear!
Find out how to bike more efficiently by calculating gear ratios.


The main driving action in a bicycle happens because of a gear system. Calculate the gear ratios of your bike, make predictions based on your calculations, and test them with a ride.

Materials

1. Stand the bicycle up. Count the number of teeth on the largest chain ring (the circle with the teeth that's connected to your pedals). Then count the teeth on the biggest and the smallest cogs on the back wheel.
2. Calculate the gear ratios for the biggest and smallest back cogs. The ratios will be for your highest and lowest gears. The formula for calculating gear ratios is:

gear ratio = number of teeth on the back cog
number of teeth on the front

The ratio for your highest gear should be smaller than for the lowest gear. That's because the gear ratio measures how many rotations of the pedals you need to turn the back wheel once. So it makes sense that the higher the gear (with a greater number of teeth on the front gear and/or a lesser number on the back gear), the less often you have to turn the pedals to make the wheels go around.
3. Pedaling produces torque (rotary force) in the front gear, which is transmitted to the rear wheel. Compare the two gears by riding the bike first set at the highest gear and then set at the lowest. Do you have to push harder to start the bike in the higher gear? Which gear ratio is better for starting? Knowing the lowest and highest gear ratios, can you roughly predict the ratios for different gear settings in between? Don't forget your helmet!
4. With your gear ratios, figure out how many times you would need to pedal in high versus low gear to get from one end of an area to another. First, measure how long a distance you will cover. Then figure the circumference of your wheels, using this formula:

circumference = diameter of wheel x pi

Now work backwards from your distance measurement to figure out how many rotations of your wheel it will take to travel from one end to the other:

= distance you want to cover
circumference of wheel

Use gear ratios to calculate how many times you would need to move your feet around to cover the distance. Remember, gear ratios are the relationship between pedals and wheels.

Questions

1. Which gear ratio makes you move your feet more?
2. Which gear is more efficient for biking on level ground-high or low?



You probably don't consciously know where your center of gravity is, but you've used it to steer your bike. To find your center of gravity, lie on the floor on your stomach with your arms at your side. Bend your elbows into your belly and try to balance on your hands. Think of your body as a seesaw, with your elbows at the center. It may take a while, but eventually you'll find it!



A heavy load on a bike makes it harder to start and stop due to inertia. See if you can borrow a friend's saddlebags for your bike. Try loads of books in different weights. What is the highest gear you can start in without any books at all? How quickly does this change as you add weight?



Compare a touring bicycle and a mountain bike. What design choices were made to adapt mountain bikes to the rocky trails and steep inclines of off-road biking? What are the features of a touring bike that make it suitable for racing?


Tapes of this episode of Newton's Apple and others are available from GPN for only $24.95.
Please call 1-800-228-4630.
For information on other Newton's Apple resources for home and school,
please call 1-800-588-NEWTON!


We encourage duplication for educational
non-commercial use!

Newton's Apple is a production of KTCA Twin Cities Public Television.
Made possible by a grant from 3M.
Educational materials developed with the National Science Teachers Association.


PBS Online - Minnesota Online - Welcome to Newton's Apple - Teacher's Guides Index