Reach Out!

Science Club Mentor Orientation

Fall 2004

Michigan Reach Out!

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Phone</th>
<th>Cell</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Director</td>
<td>Jeannine LaSovage</td>
<td>734.747.9280</td>
<td>734.945.3402</td>
<td>lasovage@ameritech.net</td>
</tr>
<tr>
<td>Elementary Coordinator</td>
<td>Debra Hamann</td>
<td>734.944.5826</td>
<td></td>
<td>dmccart@umich.edu</td>
</tr>
<tr>
<td>Field Trip Coordinator</td>
<td>Bridget Briley</td>
<td>248.210.6247</td>
<td></td>
<td>Bbriley@umich.edu</td>
</tr>
<tr>
<td>Web & Research Coordinator</td>
<td>Martha Toth</td>
<td></td>
<td></td>
<td>reachout@comcast.net</td>
</tr>
</tbody>
</table>

[Reach Out! website](www.reachoutmichigan.org)
The rewarding thing about an adult becoming involved in the life of a young person is that it changes both lives for the better.

- Nelba Chavez
Reach Out!

Mentor Orientation Table of Contents

I. Introduction
- A. Ice Breaker ... 4
- B. History of *Reach Out!* .. 4
- C. 2004–2005 Sites & Programs ... 5
- D. Calendars ... 5–6

II. Intentional Mentoring
- A. Who was a mentor to you? .. 7
- B. Why be a mentor? .. 7
- C. The Mentoring Paradigm ... 8
- D. Being a *Reach Out!* Mentor ... 8

III. Mentoring Youth
- A. An Experiment ... 9
- B. Beliefs & Goals for science clubs .. 9
- C. Intentional Dialogue .. 10–14
- D. Snapshot of the children ..14
- E. General Guidelines .. 15
- F. *Reach Out!* tips for working with kids ... 16
- G. Child Development info for mentors ... 17–21
- H. Communication Tips: providing feedback .. 22

IV. Learning Styles
- A. Three Levels of Learning .. 23
- B. What We Learn .. 23
- C. Defining Learning Styles ... 23–24
- D. Index of Learning Styles .. 25–30

V. Keys to Youth Development .. 31

VI. Wrap-Up
- A. Logistics ... 32
- B. Just for Fun .. 32
- C. A Few Final Thoughts ... 32
I. Introduction

A. Ice Breaker

1. Favorite personality trait.

2. Name one activity you want to experience this semester.

3. Why are you here?

B. History of Reach Out!

1. Michigan Reach Out! evolved from an NSF Science & Tech Center at UM’s College of Engineering. We became an independent 501(c)(3) non-profit organization in November, 2002. Our mission is to link community and college mentors with youth and to develop learning community coalitions in order to provide more educational and career exploration opportunities both within and outside of the classroom.

Our goals are to (a) Establish a model mentoring center and career resource clearing-house for the State of Michigan; (b) Assist communities pulling together people and resources to establish local mentoring and career exploration centers; (c) Provide academic support for children and youth both in and outside of the classroom; (d) Provide career exploration opportunities for children and youth; and (e) Provide children, parents, guardians, and K-12 staff information regarding post–high school job training and higher education information.

2. We are affiliated with UM’s student Reach Out! organization. This group began nine years ago while we were at the UM CoE. We hope to eventually have student Reach Out! organizations on other campuses to heighten college student, staff, and faculty involvement with mentoring and career exploration programs.
C. Sites & Programs

K-12 academic mentoring, career mentoring, and hands-on science clubs are typically what Reach Out! does in the Washtenaw County area. We recruit college and community volunteers, link them with programs, and train and support them as needed.

Our programs are intended to provide a reliable adult presence in children’s lives, someone who can advise them and advocate for them in all areas.

Our 2004–2005 sites include

Secondary Mentoring: Scarlett Middle School

Elementary Science Clubs: Mitchell Elementary School
Hikone Community Center
Pinelake Village Community Center

D. Calendars

2004–2005 Ann Arbor Secondary School Calendar

Tue., Aug. 31 First day for students. Full day.
Fri., Sep. 3 School is closed.
Mon., Sep. 6 Labor Day - School is closed.
Wed., Oct. 27 Half day AM. for all students.
Fri., Nov. 5 End of 1st marking period for secondary schools
Wed.–Fri., Nov. 24–26 Thanksgiving break - School is closed.
Fri., Dec. 17 Winter vacation begins at end of day.
Mon., Jan. 3 School resumes.
Mon., Jan. 17 Martin Luther King, Jr. Day. School is closed.
Mon., Jan. 31 End of First Semester. No school for students at secondary level.
Tue., Feb. 1 First day of second semester for secondary schools.
Fri., Feb. 18 School closes at end of day for vacation.
Mon., Feb. 28 School resumes.
Thu., Mar. 24 Spring vacation begins at end of day.
Mon., Apr. 4 School resumes.
Fri., Apr. 15 End of third marking period for secondary schools.
Wed., Apr. 27 All students half day in AM.
Mon., May 30 Memorial Day. School is closed.
Fri., Jun. 17 End of second semester. Half day for students. School offices will be open until 5:00 PM.
Mon., June 20 Each Emergency Closing Day of the 2004-2005 school year which reduces attendance days below that required by the state will be made up beginning with this day.
2004–2005 University of Michigan Calendar

<table>
<thead>
<tr>
<th>Date Range</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon., Sep. 7</td>
<td>Classes Begin</td>
</tr>
<tr>
<td>Mon.–Tue., Oct. 18–19</td>
<td>Fall Study Break</td>
</tr>
<tr>
<td>Wed., Nov. 24</td>
<td>Thanksgiving recess 5:00 PM</td>
</tr>
<tr>
<td>Mon., Nov. 29</td>
<td>Classes resume 8:00 AM</td>
</tr>
<tr>
<td>Tue., Dec. 14</td>
<td>Classes end</td>
</tr>
<tr>
<td>Wed., Dec. 15; Sat.–Sun., Dec. 18–19</td>
<td>Study Days</td>
</tr>
<tr>
<td>Thu.–Fri., Dec. 16–17; Mon.–Thu., Dec. 20–23</td>
<td>Examinations</td>
</tr>
<tr>
<td>Sun., Dec. 19</td>
<td>Commencement</td>
</tr>
<tr>
<td>Wed., Jan. 5</td>
<td>Classes begin</td>
</tr>
<tr>
<td>Sat., Feb. 26</td>
<td>Vacation begins 12:00 noon</td>
</tr>
<tr>
<td>Mon., Mar. 7</td>
<td>Classes resume</td>
</tr>
<tr>
<td>Tue., Apr. 19</td>
<td>Classes end</td>
</tr>
<tr>
<td>Wed., Apr. 20; Sat.–Sun., Apr. 23–24</td>
<td>Study Days</td>
</tr>
<tr>
<td>Thu.–Fri., Apr. 21–22; Mon.–Thu., Apr. 25–28</td>
<td>Examinations</td>
</tr>
<tr>
<td>Fri.–Sun., Apr. 29–May 1</td>
<td>Commencement Activities</td>
</tr>
<tr>
<td>Tue., May 3</td>
<td>Classes begin</td>
</tr>
<tr>
<td>Mon., May 30</td>
<td>Memorial Day (Holiday)</td>
</tr>
<tr>
<td>Mon., Jun. 20</td>
<td>Classes end (Spring Half Term)</td>
</tr>
<tr>
<td>Tue.–Wed., Jun. 21–22</td>
<td>Study Days</td>
</tr>
<tr>
<td>Thu.–Fri., Jun. 23–24</td>
<td>Examinations</td>
</tr>
<tr>
<td>Fri., Jun. 24</td>
<td>Spring Half Term ends</td>
</tr>
</tbody>
</table>

2004–2005 Eastern Michigan University Calendar

<table>
<thead>
<tr>
<th>Date Range</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed., Sept. 1</td>
<td>Classes Begin</td>
</tr>
<tr>
<td>Sat.–Mon., Sept. 4–6</td>
<td>Labor Day Recess - University Closed</td>
</tr>
<tr>
<td>Tue., Sept. 7</td>
<td>Classes Resume</td>
</tr>
<tr>
<td>Wed., Nov. 24</td>
<td>No Classes; Campus Open</td>
</tr>
<tr>
<td>Thu.–Sun., Nov. 25–28</td>
<td>Thanksgiving Recess - University Closed</td>
</tr>
<tr>
<td>Mon., Nov. 29</td>
<td>Classes Resume</td>
</tr>
<tr>
<td>Sat., Dec. 11</td>
<td>Last Day of Classes</td>
</tr>
<tr>
<td>Sun.–Sat., Dec. 12–18</td>
<td>Final Examinations</td>
</tr>
<tr>
<td>Sun., Dec. 19</td>
<td>Commencement</td>
</tr>
<tr>
<td>Wed., Jan. 5</td>
<td>Classes Begin</td>
</tr>
<tr>
<td>Mon., Jan. 17</td>
<td>Martin Luther King, Jr. Day. No Classes, Campus Open</td>
</tr>
<tr>
<td>Mon.–Sun., Feb.28–Mar. 6</td>
<td>Winter Recess - No Classes, Campus Open</td>
</tr>
<tr>
<td>Mon., Mar. 7</td>
<td>Classes Resume</td>
</tr>
<tr>
<td>Fri.–Sun., Mar. 25–27</td>
<td>Spring Recess - University Closed</td>
</tr>
<tr>
<td>Tue., Apr. 19</td>
<td>Last Day of Classes</td>
</tr>
<tr>
<td>Wed.–Tue., Apr. 20–26</td>
<td>Final Examinations</td>
</tr>
<tr>
<td>Sun., Apr. 24</td>
<td>Winter Commencement</td>
</tr>
<tr>
<td>Mon., May 2</td>
<td>Classes Begin</td>
</tr>
<tr>
<td>Mon., May 30</td>
<td>Memorial Day - University Closed</td>
</tr>
<tr>
<td>Mon., June 13</td>
<td>Last Day of Classes - 6 Week (Final Exams during last scheduled class)</td>
</tr>
<tr>
<td>Thu., June 23</td>
<td>Last Day of Classes - 7 1/2 Week (Final Exams during last scheduled class)</td>
</tr>
</tbody>
</table>
II. Intentional Mentoring

A. Who was and is a mentor to you? What characteristics do they possess?

B. Why do I want to be a Reach Out! Mentor?

1. What do I have to offer?

2. What do I have to gain?

3. What do I believe about a student that isn’t doing well academically?

4. What do I know and believe about a learning community?
C. The Mentoring Paradigm

<table>
<thead>
<tr>
<th>Mentoring Element</th>
<th>Learning-Centered Mentoring Paradigm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mentee’s Role</td>
<td>Active partner, who is equally responsible for his or her learning and social development</td>
</tr>
<tr>
<td>Mentor’s Role</td>
<td>Facilitator who helps to create and maintain a safe and supportive climate that promotes learning</td>
</tr>
<tr>
<td>Learning process</td>
<td>Self-directed</td>
</tr>
<tr>
<td>Focus</td>
<td>Process-oriented; goal-oriented</td>
</tr>
</tbody>
</table>

D. Being a Reach Out! Mentor

1. The benefits:
 - Broaden your network of friends and contacts on campus and in the community.
 - Make a real difference in someone’s life; be a role model.
 - Establish a meaningful resume line item and experience to share in interviews.
 - Develop leadership skills applicable to any career and future community.
 - Be involved in a team effort. We support you through your entire experience.
 - Explore careers: counseling, teaching, social work and community development

2. The commitment required:
 - Accept responsibility for representing Reach Out! with dignity and pride by being a positive role model for youth
 - Work with the same child for one or two hours a week for at least one semester.
 - Check in regularly with child’s teachers and counselor to share progress, questions, and concerns.
 - If missing a session call child at least a day ahead. Re-schedule if possible.
 - Work with children only at the places designated by Reach Out!
 - Contact a parent or guardian in the beginning for introductions, and then at least once a month to share something positive about child and to find ways to work together to support him or her with learning and academic success.
 - Once a semester, participate in a group outing which Reach Out! will arrange in Ann Arbor for teens/children, parents, and mentors. Also join a community service project with other mentors and mentees once a semester.
 - Complete a brief but invaluable program evaluation
III. Mentoring Youth

A. An Experiment: Signatures & Individual Uniqueness

In the space below, sign your signature:

Now sign your signature with your opposite hand:

What Happened?

When you tried to do something that was not natural to you:

1. You felt uncomfortable.
2. It took extra time and effort.
3. You still did a lousy job at it!

We are each wired in a unique way. Similarly, we each have different learning styles. When we try to learn in a way that is not natural for us, we struggle and often fail or perform poorly, resulting in low test scores and low grades.

- Remember … this experiment when you help your student celebrate his/her individuality.
- Remember … we are all wired in a unique way and we all have different learning styles.
- Remember … to connect this concept to goals for learning, college, and career.

As a mentor, a key role is for you to help your child learn about him- or herself. We will give you ideas, tips, and resources so you can listen to and guide them in discovering their talents, skills, learning styles, and potential career fields.

B. Reach Out! Beliefs and Goals for Science Clubs

Beliefs

- All children can learn science
- Science can be fun
- Science is exploring and discovering ourselves and the world around us
• Science is a continuous process
• The mystery of “not knowing” is what makes science exciting

Mentor Goals
• Develop a supportive mentoring relationship with children
• Provide kids with opportunities to experience hands-on science
• Help children take science back into their classrooms

Mentor Code of Conduct

Mentors will
1. Accept responsibility for representing Reach Out! with dignity and pride by being a positive role model for youth
2. Conduct themselves in a courteous and respectful manner
3. Not consume alcohol or illegal drugs before or during work with youth
4. Work with youth only at the designated places and never be alone with a child
5. Accept no monetary compensation for services provided

C. Intentional Dialogue

Effective communication is absolutely essential for good relationships. As a mentor, your ability to listen to and interact with your child is a key for how meaningful the relationship will be.

Just what is “communication”? A verbal and nonverbal exchange of:
• Information
• Feelings
• Meanings

What is Intentional Dialogue? An honest and respectful reciprocal exchange of:
• Ideas
• Information
• Feelings
• Meanings

It includes a sincere commitment and desire to both “listen” and “hear.”
Three Processes of Intentional Dialogue

1. Mirroring (Children often state that they feel misunderstood or unheard.)
 - Setting aside what you know, think or feel about something in order to tune into what the other person is saying.
 - Paraphrasing: Accurately reflecting back to the sender the content of the message he or she was trying to give.
 - Be careful not to interrupt what is said or to interpret it; just rephrase it.

2. Validation
 - Communicate to the sender that the information has been received and mirror that it makes sense.
 - See the other’s point of view; put aside, for at least a moment, your viewpoint and judgments.
 - Common phrases to use:
 “I can see that.” “It makes sense to me that you would think that.”
 “I can understand that.”
 - When you validate, it does not mean that you agree with his or her view, but it does mean that you acknowledge it and accept the reality that two individuals will often have different points of view.

Why are mirroring and validation so critical for being a good mentor?

These two processes affirm the other person. When we can communicate and affirm another person, we increase trust and closeness.

3. Empathy
 - Reflect or imagine the feelings the sender is experiencing.
 - Common phrases to use: “I can imagine that you must feel…”
 “I understand that you feel…”

Why would a mentor care about intentional dialogue skills?

 a. You want to discuss something that might be a touchy subject.
 b. You are upset about something related to the other person and need to discuss it.
 c. You simply want to be listened to and understood.

How to go about Intentional Dialogue

It is up to your mentee to give you permission to have intentional dialogue. How many people have tried to discuss something with you when you were not ready to listen?
“I would really like to discuss something with you. Is now a good time to do that?”

Honor your mentee’s decision, but don’t let him or her off the hook.

“When would be a good time to talk, if not now?”

Note: try to erase “but” statements!

Let’s Practice (groups of 2 or 3)

1. Each person should take turns being …
 - an observer
 - a mentor
 - a student

2. The scenarios
 - Your student’s attendance at mentoring sessions is poor. Dialogue with him/her to resolve this issue and to communicate that your time is valuable.

Directions for observer: listen and record how the mentor did on the following skills.

Mirroring?

Validation?

Empathy?

What actions or comments could have improved this dialogue?

- Your student is complaining and remarking about how his/her teacher is the reason for his/her poor grades. Communicate that the teacher is only part of the problem and that there are ways to get good grades even if you don’t like the teacher.

Mirroring?

Validation?

Empathy?
What actions or comments could have improved this dialogue?

• Your student confides in you that s/he likes to drink and sneaks into parties with friends who drink. Share your experience and concerns without passing judgment. Mirroring?

Validation?

Empathy?

What actions or comments could have improved this dialogue?

• Your student begins a pattern of calling you at inappropriate times. Set boundaries for the relationship. Mirroring?

Validation?

Empathy?

What actions or comments could have improved this dialogue?

• Your student continually does not follow through on his/her scholastic responsibilities. S/he doesn’t even write down assignments in the school-provided planner. When you inquire, s/he confides that home isn’t the greatest place to study. Help him/her troubleshoot the problem and create solutions. Mirroring?

Validation?
Empathy?

What actions or comments could have improved this dialogue?

D. Snapshot of the children we serve and their needs

Demographics

- Elementary school ages (K-5)
- Varying abilities, multiple intelligences, varied learning styles
- Culturally diverse
- Varied socio-economic backgrounds, but mostly working-class families
- Some labeled with behavioral problems or learning disabilities such as Attention Deficit Hyperactivity Disorder

Personal Characteristics

- Range from extremely articulate to unexpressive
- Can be blunt and candid, “streetwise” for their age
- Can use “ebonics” or inappropriate language in routine conversation
- Can be very personal and inquisitive
- Hungry for physically demonstrated affection: like to touch, hug, be carried
- Need someone to identify with and rely upon
- Need immediate recognition and reward for achievement. Need to be shown respect and made to feel that they “can!”
- Need to be made to feel that they are important enough to be worth someone’s time
- Have short attention spans
- Like to talk a lot, listen a little
- Need two-way conversation (most kids are too often “talked at”)
- Developing identity as students
- Easily take negative looks or words personally
- Are often “concrete operational”—need to receive things one step at a time, are hands-on
- Can usually express thoughts better through speaking than writing
E. General Guidelines

We are trying to

- Allow kids to make choices
- Let children feel as if they are in control of their own futures
- Build trusting relationships
- Help them explore their personalities and interests
- Foster enthusiasm about science and learning
- Reinforce the process of the scientific method
- Help kids think about how their bodies work and how to take care of them

Please DO

- Be an attentive listener
- Be affectionate
- Be patient
- Share your life stories
- Ask questions
- Research lessons if you don’t understand them
- Feel free to bring additional materials to enhance the lessons
- Call their parents and give “praise reports”
- Write letters or notes to children
- Give kids homemade cards and pictures

We are NOT trying to

- Embarrass kids or make them feel ashamed for “not knowing”
- Tell them what they should do with their lives
- “Teach to the test”

Please DO NOT

- Be alone with your child
- Enter kids’ homes without a parent present
- Transport them in your personal vehicle
- Buy expensive gifts
F. Reach Out! Tips for Working with Kids

• Show enthusiasm! Enthusiasm about science is catching. Let students see your excitement about their projects, experiments, and discoveries.

• Treat children with respect and listen to what they say. Talk eye-to-eye.

• Use terminology appropriate for their age level.

• Assist children without taking control (i.e., don’t do the science experiment for them).

• You’re teaching a process, not facts. Give students time to explore, observe, handle materials, test ideas, and talk about what they are exploring and learning. Don’t worry about the results so much.

• Ask questions that encourage children to think for themselves, such as, “Why do you think this liquid is bubbling?” Avoid probing for the “right answer.”

• Science is about asking questions and searching for answers. Model that it is okay, in fact necessary, to not have all the answers.

• Recognize the range of children’s abilities: some work more slowly than others.

• When you praise a child, you must believe what you are saying, and it must be based on something very specific that you share with him or her. For example, you see Anne helping Chris with the experiment. You say, “Thanks, Anne. You are being very helpful.”

• Children notice everything you do and imitate it. Please be careful of what you say and the language you use—even when you think they are not listening!

• If a child is not cooperating, or shares personal matters of a serious nature with you, please notify the club coordinator.

Children need people more than they need science.

What is important is that they know you care about them.
G. Child Development Information for Mentors

Ages & Stages: Six through Eight-Year-Olds

Lesia Oesterreich, M.S., Family Life Extension Specialist, Human Development and Family Studies, Iowa State University

Six, seven, and eight-year-olds build on the important developments of the first 6 years of life and seem to settle down to a steadier pace of growing and learning. Young school-age children are interested in real-life tasks and activities, and pretend and fantasy lessen considerably. School-agers want to make “real” jewelry, take “real” photographs, and create “real” collections. School-age children have longer attention spans. They are more likely to stick with things until the project is finished, the problem solved, or the argument resolved. Doing things together with friends, teamwork, and following rules become very important. This age group is fascinated by rules and can develop games with extensive rules and rituals.

Physical Development

- skilled at using scissors and small tools
- development of permanent teeth
- enjoys testing muscle strength and skills
- good sense of balance
- can catch small balls
- can tie shoelaces
- enjoys copying designs and shapes, letters and numbers
- can print name
- long arms and legs may give gawky awkward appearance

Intellectual Development

- may reverse printed letters (b/d)
- enjoys planning and building
- doubles speaking and listening vocabularies
- reading may become a major interest
- increased problem-solving ability
- interested in magic and tricks
- longer attention span
- enjoys creating elaborate collections
- able to learn difference between left and right
- can begin to understand time and the days of the week

Social and Emotional Development

- being with friends becomes increasingly important
- interested in rules and rituals
- girls want to play more with girls; boys with boys
- may have a best friend and an enemy
- strong desire to perform well, do things right
- begins to see things from another child’s point of view, but still very self-centered
- finds criticism or failure difficult to handle
- views things as black and white, right or wrong, wonderful or terrible, with very little middle ground
• seeks a sense of security in groups, organized play, and clubs
• generally enjoys caring for and playing with younger children
• may become upset when behavior or school-work is ignored

Ideas for Caregivers

• Provide opportunities for active play. Throwing at targets, running, jumping rope, tumbling, and aerobics may be of interest.
• Provide opportunities to develop an understanding of rules by playing simple table games: cards, dominoes, tic-tac-toe, etc.
• Provide opportunities for children to do noncompetitive team activities such as working a jigsaw puzzle or planting a garden.
• Encourage children’s sense of accomplishment by providing opportunities to build models, cook, make crafts, practice music, or work with wood.
• Encourage children’s collections by allowing them to make special boxes or books in which to store their collections.
• Encourage reading and writing by allowing children to produce stories with scripts, create music for plays and puppet shows, produce a newspaper, record events, go on field trips, or conduct experiments.
• Help children explore their world by taking field trips to museums, work places, and other neighborhoods. Invite community helpers to your home.

Cognitive Development

Developed by: W. Huitt & J. Hummel Last Revised: January, 1998 Edited for *Reach Out!*

Jean Piaget (1896-1980) was one of the most influential researchers in the area of developmental psychology during the 20th century. He originally trained in the areas of biology and philosophy and considered himself a “genetic epistemologist.” He was mainly interested in the biological influences on “how we come to know.” He believed that what distinguishes human beings from other animals is our ability to do “abstract symbolic reasoning.” Piaget’s views are often compared with those of Lev Vygotsky (1896-1934), who looked more to social interaction as the primary source of cognition and behavior. This is somewhat similar to the distinctions made between Freud and Erikson in terms of the development of personality. The writings of Piaget and Vygotsky, along with the work of John Dewey, Jerome Bruner, and Ulrick Neisser, form the basis of the constructivist theory of learning and instruction.

While working in Binet’s IQ test lab in Paris, Piaget became interested in how children think. He noticed that young children’s answers were qualitatively different than those of older children, which suggested to him that the younger ones were not dumber (a quantitative position, since as they got older and had more experiences they would get smarter) but, instead, answered the questions differently than their older peers because they thought differently.
There are two major aspects to his theory: the process of coming to know and the stages we move through as we gradually acquire this ability.

Process of Cognitive Development. As a biologist, Piaget was interested in how an organism adapts to its environment (Piaget described this as intelligence). Behavior (adaptation to the environment) is controlled through mental organizations called schemas that the individual uses to represent the world and to designate action. This adaptation is driven by a biological drive to obtain balance between schemes and the environment (equilibration).

Piaget hypothesized that infants are born with schemes operating at birth that he called “reflexes.” In other animals, these reflexes control behavior throughout life. In human beings, however, as the infant uses reflexes to adapt to the environment, these reflexes are quickly replaced with constructed schemas.

Piaget described two processes used by the individual in its attempt to adapt: assimilation and accommodation. Both of these processes are used throughout life as the person increasingly adapts to the environment in a more complex manner.

Assimilation is the process of using or transforming the environment so that it can be placed in preexisting cognitive structures. Accommodation is the process of changing cognitive structures in order to accept something from the environment. Both processes are used simultaneously and alternately throughout life. An example of assimilation would be when an infant uses a sucking schema that was developed by sucking on a small bottle when attempting to suck on a larger bottle. An example of accommodation would be when the child needs to modify a sucking schema developed by sucking on a pacifier to one that would be successful for sucking on a bottle.

As schemas become increasingly more complex (i.e., responsible for more complex behaviors) they are termed structures. As one’s structures become more complex, they are organized in a hierarchical manner (i.e., from general to specific).

Stages of Cognitive Development. Piaget identified four stages in cognitive development:

1. **Sensorimotor stage** (infancy). In this period, intelligence is demonstrated through motor activity without the use of symbols. Knowledge of the world is limited (but developing), because it’s based on physical interactions/experiences. Children acquire object permanence at about 7 months of age (memory). Physical development (mobility) allows the child to begin developing new intellectual abilities. Some symbolic (language) abilities are developed at the end of this stage.

2. **Pre-operational stage** (toddler and early childhood). In this period, intelligence is demonstrated through the use of symbols, language use matures, and memory and imagination are developed, but thinking is done in a nonlogical, nonreversible manner. Egocentric thinking predominates.

3. **Concrete operational stage** (elementary and early adolescence). In this stage (characterized by 7 types of conservation—number, length, liquid, mass, weight, area, volume), intelligence is demonstrated through logical and systematic manipulation of symbols related to concrete objects. Operational thinking develops (mental actions that are reversible). Egocentric thought diminishes.

4. **Formal operational stage** (adolescence and adulthood). In this stage, intelligence is demonstrated through the logical use of symbols related to abstract concepts. Early in the period,
there is a return to egocentric thought. Only 35% of high school graduates in industrialized countries obtain formal operations; many people do not think formally during adulthood.

Many preschool and primary programs are modeled on Piaget’s theory, which provides part of the foundation for constructivist learning. Discovery learning and supporting the developing interests of the child are two primary instructional techniques. It is recommended that parents and teachers challenge the child’s abilities, but NOT present material or information that is too far beyond the child’s level. It is also recommended that teachers use a wide variety of concrete experiences to help the child learn (e.g., use of manipulatives, working in groups to get experience seeing from another’s perspective, field trips).

Piaget’s research methods were based primarily on case studies [they were descriptive]. While some of his ideas have been supported through more correlational and experimental methodologies, others have not. For example, Piaget believed that biological development drives the movement from one cognitive stage to the next. Data from cross-sectional studies of children in a variety of western cultures seem to support this assertion for the stages of sensorimotor, preoperational, and concrete operations. However, data from similar cross-sectional studies of adolescents do not support the assertion that all individuals will automatically move to the next cognitive stage as they biologically mature. For formal operations, it appears that maturation establishes the basis, but a special environment is required for most adolescents and adults to attain this stage.

http://chiron.valdosta.edu/whuitt/col/cogsys/piaget.html

Applications of Piagetian Theory to Teaching and Learning

<table>
<thead>
<tr>
<th>Teaching the Preoperational Child (Toddler and Early Childhood)</th>
</tr>
</thead>
</table>
| Use concrete props and visual aids to illustrate lessons and help children understand what is being presented. | • Use physical illustrations.
• Use drawings and illustrations. |
| Make instructions relatively short, using actions as well as words, to lessen likelihood that the students will get confused. | • After giving instructions, ask a student to demonstrate them as a model for the rest of the class.
• Explain a game by acting out the part of a participant. |
| Do not expect the students to find it easy to see the world from someone else’s perspective since they are likely to be very egocentric at this point. | • Avoid lessons about worlds too far removed from the child’s experience.
• Discuss sharing from the child’s own experience. |
| Give children a great deal of physical practice with the facts and skills that will serve as building blocks for later development. | • Use cut-out letters to build words.
• Avoid overuse of workbooks and other paper-and-pencil tasks. |
| Encourage the manipulation of physical objects that can change in shape while retaining a constant mass, giving the students a chance to move toward the understanding of conservation and two-way logic needed in the next stage. | • Provide opportunities to play with clay, water, or sand.
• Engage students in conversations about the changes the students are experiencing when manipulating objects. |
| Provide many opportunities to experience the world in order to build a foundation for concept learning and language. | • Take field trips.
• Use and teach words to describe what they are seeing, doing, touching, tasting, etc.
• Discuss what they are seeing on TV |

Above and following tables from http://chiron.valdosta.edu/whuitt/col/cogsys/piagtuse.html
Teaching the Concrete Operational Child (Middle Childhood)

| Continue to use concrete props and visual aids, especially when dealing with sophisticated material. | • Provide time-lines for history lessons.
• Provide three-dimensional models in science. |
| --- | --- |
| Continue to give students a chance to manipulate objects and test out their ideas. | • Demonstrate simple scientific experiments in which the students can participate.
• Show craftwork to illustrate daily occupations of people of an earlier period. |
| Make sure that lectures and readings are brief and well organized. | • Use materials presenting a step-to-step progression of ideas.
• Have students read short stories or books with short, logical chapters, moving to longer reading assignments only when the students are ready. |
| Ask students to deal with no more than three or four variables at a time. | • Require readings with a limited number of characters.
• Demonstrate experiments with a limited number of steps. |
| Use familiar examples to help explain more complex ideas so students will have a beginning point for assimilating new information. | • Compare students’ own lives with those of the characters in a story.
• Use story problems in mathematics. |
| Give opportunities to classify and group objects and ideas on increasingly complex levels. | • Give students separate sentences on slips of paper to be grouped into paragraphs.
• Use outlines, hierarchies, and analogies to show the relationship of unknown new material to already acquired knowledge. |
| Present problems which require logical, analytical thinking to solve. | • Provide materials such as Mind Twisters, Brain Teasers, and riddles.
• Focus discussions on open-ended questions which stimulate thinking (e.g., are the mind and the brain the same thing?) |

Teaching Students Beginning to Use Formal Operations (Adolescence)

| Continue to use many of the teaching strategies and materials appropriate for students at the concrete operational stage. | • Use visual aids such as charts and illustrations, as well a simple but somewhat more sophisticated graphs and diagrams.
• Use well-organized materials that offer step-by-step explanations. |
| --- | --- |
| Give students an opportunity to explore many hypothetical questions. | • Provide students opportunities to discuss social issues.
• Provide consideration of hypothetical “other worlds.” |
| Encourage students to explain how they solve problems. | • Ask students to work in pairs with one student acting as the problem solver, thinking aloud while tackling a problem, with the other student acting as the listener, checking to see that all steps are mentioned and that everything seems logical.
• Make sure that at least some of the tests you give ask for more than rote memory or one final answer; essay questions, for example, might ask students to justify two different positions on an issue. |
| Whenever possible, teach broad concepts, not just facts, using materials and ideas relevant to the students. | • While discussing a topic such as the Civil War, consider what other issues have divided the country since then.
• Use lyrics from popular music to teach poetic devices, to reflect on social problems, and so on. |
H. Communication Tips: Providing Feedback

<table>
<thead>
<tr>
<th>What to Do</th>
<th>How to Do It</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Align your feedback with the mentee’s agenda.</td>
<td>Provide real-time feedback.</td>
<td>“What works for me is….”</td>
</tr>
<tr>
<td></td>
<td>Offer concrete, practical examples.</td>
<td>“I have a few ideas that might help….”</td>
</tr>
<tr>
<td>Change the behavior and not the person.</td>
<td>Stay with mentee’s behavior</td>
<td>“How might someone else see that behavior?”</td>
</tr>
<tr>
<td></td>
<td>Rather than succumb to the temptation to evaluate it.</td>
<td></td>
</tr>
<tr>
<td>Use a tone of respect.</td>
<td>Take care not to undermine the mentee’s self-esteem.</td>
<td>“I wonder…”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“I liked the way you…”</td>
</tr>
<tr>
<td>Avoid giving feedback when you lack adequate</td>
<td>Ask for time to gather more information. Faking it doesn’t work.</td>
<td>“To be honest with you, I need to think about that a little more.”</td>
</tr>
<tr>
<td>information.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encourage mentee to use feedback as a positive</td>
<td>Continuously link progress and learning to the big picture.</td>
<td>“When we started out … And then … and now…”</td>
</tr>
<tr>
<td>way to grow.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“I Messages”

“I messages” are super strategies to communicate with your student (and others in our lives!) what is troubling or positive to you about his or her behavior. Try them out!

I feel (mad, sad, glad, bad...)

\[I \text{ feel } (\text{mad, sad, glad, bad...}) + \text{ when you } (\text{specific behavior they exhibit}) + \text{ and it makes me } (\text{the consequence of their behavior for you}).\]

Examples are: “I feel bad and unappreciated when you don’t come to meet with me, and it makes me feel like you don’t care about me and the time I am investing in you.”

“I feel happy and appreciated when you call me to tell me how you did on a test or assignment, and it makes me realize that we have a great relationship and that our time together is helping you with school work.”

“I feel useless and frustrated when you don’t write down on your planner what your assignments are, and it makes me unable to help you with your homework, skills, and grades.”

“I feel understood and happy when you greet me with a smile and work you want some help with, and it makes me so proud of us and our relationship.”

We encourage you to keep a journal about your experiences and communications with us and with your child. Please take a moment to jot down your profile—goals and expectations—for being an effective mentor this year! Are there specific ways we can help you now or later?
IV. Learning Styles

A. Three Levels of Learning: How we come to know and understand

1. Frustration Level
 • In over your head
 • Have significant holes and gaps in prerequisite skills and concepts
 • Can’t do alone or with help

2. Instructional Level
 • Need help
 • In the process of making sense of and applying
 • Often somewhat rigid: can’t apply outside of original context

3. Independent Level
 • Can do on one’s own
 • Makes sense of and applies or connects to previous learning and life
 • Can teach it to others
 • Flexible knowledge: can alter or change contexts with ease

B. What We Learn

1. Concepts
2. Principles
3. Facts
4. Skills
5. Methods & Processes

C. Defining Learning Styles

1. Definition: a person’s typical modes of perceiving, remembering, thinking, and problem-solving

2. Why look at learning styles? ... Let’s BRAINSTORM.
3. How do I learn?

4. How don’t I learn?

5. Evaluate your own learning and your mentee’s style, using the

Index of Learning Styles instrument (on the following pages and) at

The Index of Learning Styles (ILS) is used to assess preferences on four dimensions:

- active/reflective
- sensing/intuitive
- visual/verbal
- sequential/global

Richard M. Felder and Linda K. Silverman formulated the model. (The model also contains a fifth dimension, inductive/deductive, that is not assessed by the ILS.)

The profile does not reflect a student’s suitability or unsuitability for a particular subject, discipline, or profession. Labeling students in this way is at best misleading and can be destructive if the student uses the label as justification for a major shift in curriculum or career goals.

The following items are available for viewing and downloading.

ILS questionnaire—Web version. A 44-item questionnaire that can be submitted and automatically scored on the Web.

ILS questionnaire—Paper and Pencil version. A 44-item questionnaire that can be downloaded and given to students, who enter their responses on the next form. (This follows on pages 18–20)

ILS questionnaire response sheet. A self-scoring form for students to enter their responses to the ILS and calculate their preference scores. (This hand-scoring sheet follows on page 21)

Descriptions of the learning styles. A three-page handout to be given to students after they have completed either version of the instrument. (pages 22–24)
Index of Learning Styles

www2.ncsu.edu:80/unity/lockers/users/f/felder/public/ILSpage.html

Circle “a” or “b” to indicate your answer to every question. Please choose only one answer for each question. If both “a” and “b” seem to apply to you, choose the one that applies more frequently.

1. I understand something better after I
 (a) try it out.
 (b) think it through.

2. I would rather be considered
 (a) realistic.
 (b) innovative.

3. When I think about what I did yesterday, I am most likely to get
 (a) a picture.
 (b) words.

4. I tend to
 (a) understand details of a subject but may be fuzzy about its overall structure.
 (b) understand the overall structure but may be fuzzy about details.

5. When I am learning something new, it helps me to
 (a) talk about it.
 (b) think about it.

6. If I were a teacher, I would rather teach a course
 (a) that deals with facts and real life situations.
 (b) that deals with ideas and theories.

7. I prefer to get new information in
 (a) pictures, diagrams, graphs, or maps.
 (b) written directions or verbal information.

8. Once I understand
 (a) all the parts, I understand the whole thing.
 (b) the whole thing, I see how the parts fit.

9. In a study group working on difficult material, I am more likely to
 (a) jump in and contribute ideas.
 (b) sit back and listen.

10. I find it easier
 (a) to learn facts.
 (b) to learn concepts.

11. In a book with lots of pictures and charts, I’m likely to
 (a) look over the pictures and charts carefully.
 (b) focus on the written text.

12. When I solve math problems
 (a) I usually work my way to the solutions one step at a time.
 (b) I often just see the solutions but then have to struggle to figure out the steps to get to them.

13. In classes I have taken
 (a) I have usually gotten to know many of the students.
 (b) I have rarely gotten to know many of the students.

14. In reading nonfiction, I prefer
 (a) something that teaches me new facts or tells me how to do something.
 (b) something that gives me new ideas to think about.

15. I like teachers
 (a) who put a lot of diagrams on the board.
 (b) who spend a lot of time explaining.

16. When I’m analyzing a story or a novel
 (a) I think of the incidents and try to put them together to figure out the themes.
 (b) I just know what the themes are when I finish reading and then I have to go back and find the incidents that demonstrate them.

17. When I start a homework problem, I’m more likely to
 (a) start working on the solution immediately.
 (b) try to fully understand the problem first.

18. I prefer the idea of
 (a) certainty.
 (b) theory.

19. I remember best
 (a) what I see.
 (b) what I hear.

20. It is more important to me that an instructor
 (a) lay out the material in clear sequential steps.
 (b) give me an overall picture and relate the material to other subjects.

21. I prefer to study
 (a) in a study group.
 (b) alone.

22. I am more likely to be considered
 (a) careful about the details of my work.
 (b) creative about how to do my work.

23. When I get directions to a new place, I prefer
 (a) a map.
 (b) written instructions.

24. I learn
 (a) at a fairly regular pace. If I study hard, I’ll “get it.”
 (b) in fits and starts. I’ll be totally confused and then suddenly it all “clicks.”
25. I would rather first
 (a) try things out.
 (b) think about how I’m going to do it.

26. When I am reading for enjoyment, I like writers to
 (a) clearly say what they mean.
 (b) say things in creative, interesting ways.

27. When I see a diagram or sketch in class, I am most
 likely to remember
 (a) the picture.
 (b) what the instructor said about it.

28. When considering a body of information, I am more
 likely to
 (a) focus on details and miss the big picture.
 (b) try to understand the big picture before getting into
 the details.

29. I more easily remember
 (a) something I have done.
 (b) something I have thought a lot about.

30. When I have to perform a task, I prefer to
 (a) master one way of doing it.
 (b) come up with new ways of doing it.

31. When someone is showing me data, I prefer
 (a) charts or graphs.
 (b) text summarizing the results.

32. When writing a paper, I am more likely to
 (a) work on (think about or write) the beginning of the
 paper and progress forward.
 (b) work on (think about or write) different parts of the
 paper and then order them.

33. When I have to work on a group project, I first want
 to
 (a) have “group brainstorming” where everyone
 contributes id
 (b) brainstorm individually and then come together as
 a group to compare ideas.

34. I consider it higher praise to call someone
 (a) sensible.
 (b) imaginative.

35. When I meet people at a party, I am more likely to
 remember
 (a) what they looked like
 (b) what they said about themselves.

36. When I am learning a new subject, I prefer to
 (a) stay focused on that subject, learning as much
 about it as I can
 (b) try to make connections between that subject and
 related subjects.

37. I am more likely to be considered
 (a) outgoing
 (b) reserved

38. I prefer courses that emphasize
 (a) concrete material (facts, data).
 (b) abstract material (concepts, theories).

39. For entertainment, I would rather
 (a) watch television.
 (b) read a book.

40. Some teachers start their lectures with an outline of
 what they will cover. Such outlines are
 (a) somewhat helpful to me.
 (b) very helpful to me.

41. The idea of doing homework in groups, with one grade
 for the entire group,
 (a) appeals to me.
 (b) does not appeal to me.

42. When I am doing long calculations,
 (a) I tend to repeat all my steps and check my work
 carefully.
 (b) I find checking my work tiresome and have to force
 myself to do it.

43. I tend to picture places I have been
 (a) easily and fairly accurately.
 (b) with difficulty and without much detail.

44. When solving problems in a group, I would be more
 likely to
 (a) think of the steps in the solution process.
 (b) think of possible consequences or applications of the
 solution in a wide range of areas.
ILS Scoring Sheet

1. Put "1"s in the appropriate spaces in the table below (e.g. if you answered "a" to Question 3, put a "1" in Column "a" by Question 3).

2. Total the columns and write the totals in the indicated spaces.

3. For each of the four scales, subtract the smaller total from the larger one. Write the difference (1 to 11) and the letter (a or b) with the larger total.

<table>
<thead>
<tr>
<th>ACT / REF</th>
<th>SEN / INT</th>
<th>VIS / VRB</th>
<th>SEQ / GLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q a b</td>
<td>Q a b</td>
<td>Q a b</td>
<td>Q a b</td>
</tr>
<tr>
<td>1 ___ ___</td>
<td>2 ___ ___</td>
<td>3 ___ ___</td>
<td>4 ___ ___</td>
</tr>
<tr>
<td>5 ___ ___</td>
<td>6 ___ ___</td>
<td>7 ___ ___</td>
<td>8 ___ ___</td>
</tr>
<tr>
<td>9 ___ ___</td>
<td>10 ___ ___</td>
<td>11 ___ ___</td>
<td>12 ___ ___</td>
</tr>
<tr>
<td>13 ___ ___</td>
<td>14 ___ ___</td>
<td>15 ___ ___</td>
<td>16 ___ ___</td>
</tr>
<tr>
<td>17 ___ ___</td>
<td>18 ___ ___</td>
<td>19 ___ ___</td>
<td>20 ___ ___</td>
</tr>
<tr>
<td>21 ___ ___</td>
<td>22 ___ ___</td>
<td>23 ___ ___</td>
<td>24 ___ ___</td>
</tr>
<tr>
<td>25 ___ ___</td>
<td>26 ___ ___</td>
<td>27 ___ ___</td>
<td>28 ___ ___</td>
</tr>
<tr>
<td>29 ___ ___</td>
<td>30 ___ ___</td>
<td>31 ___ ___</td>
<td>32 ___ ___</td>
</tr>
<tr>
<td>33 ___ ___</td>
<td>34 ___ ___</td>
<td>35 ___ ___</td>
<td>36 ___ ___</td>
</tr>
<tr>
<td>37 ___ ___</td>
<td>38 ___ ___</td>
<td>39 ___ ___</td>
<td>40 ___ ___</td>
</tr>
<tr>
<td>41 ___ ___</td>
<td>42 ___ ___</td>
<td>43 ___ ___</td>
<td>44 ___ ___</td>
</tr>
</tbody>
</table>

Total (sum 1’s in each column)

<table>
<thead>
<tr>
<th>ACT / REF</th>
<th>SEN / INT</th>
<th>VIS / VRB</th>
<th>SEQ / GLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b</td>
<td>a b</td>
<td>a b</td>
<td>a b</td>
</tr>
</tbody>
</table>

(Larger - Smaller) + Letter of Larger (see below)

Explanation of scores

- If your score on a scale is 1–3, you have a mild preference for one or the other dimension but you are essentially well balanced. (For example, a 3a in the ACT/REF category indicates a mild preference for active learning.)

- If your score on a scale is 5–7, you have a moderate preference for one dimension of the scale and will learn more easily in a teaching environment which favors that dimension.

- If your score on a scale is 9–11, you have a strong preference for one dimension of the scale. You may have real difficulty learning in an environment which does not support that preference.
Active and Reflective Learners

- Active learners tend to retain and understand information best by doing something active with it—discussing or applying it or explaining it to others. Reflective learners prefer to think about it quietly first.

- “Let’s try it out and see how it works” is an active learner’s phrase; “Let’s think it through first” is the reflective learner’s response.

- Active learners tend to like group work more than reflective learners, who prefer working alone.

- Sitting through lectures without getting to do anything physical but take notes is hard for both learning types, but particularly hard for active learners.

Everybody is active sometimes and reflective sometimes. Your preference for one category or the other may be strong, moderate, or mild. A balance of the two is desirable. If you always act before reflecting, you can jump into things prematurely and get into trouble, while if you spend too much time reflecting, you may never get anything done.

How can ACTIVE learners help themselves?

If you are an active learner in a class that allows little or no class time for discussion or problem-solving activities, you should try to compensate for these lacks when you study. Study in a group in which the members take turns explaining different topics to each other. Work with others to guess what you will be asked on the next test and figure out how you will answer. You will always retain information better if you find ways to do something with it.

How can REFLECTIVE learners help themselves?

If you are a reflective learner in a class that allows little or no class time for thinking about new information, you should try to compensate for this lack when you study. Don’t simply read or memorize the material; stop periodically to review what you have read and to think of possible questions or applications. You might find it helpful to write short summaries of readings or class notes in your own words. Doing so may take extra time but will enable you to retain the material more effectively.

Sensing and Intuitive Learners

- Sensing learners tend to like learning facts; intuitive learners often prefer discovering possibilities and relationships.

- Sensors often like solving problems by well-established methods and dislike complications and surprises; intuitors like innovation and dislike repetition. Sensors are more likely than intuitors to resent being tested on material that has not been explicitly covered in class.

- Sensors tend to be patient with details and good at memorizing facts and doing hands-on (laboratory) work; intuitors may be better at grasping new concepts and are often more comfortable than sensors with abstractions and mathematical formulations.
• Sensors tend to be more practical and careful than intuitors; intuitors tend to work faster and to be more innovative than sensors.

• Sensors don’t like courses that have no apparent connection to the real world; intuitors don’t like “plug-and-chug” courses that involve a lot of memorization and routine calculations.

Everybody is sensing sometimes and intuitive sometimes. Your preference for one or the other may be strong, moderate, or mild. To be effective as a learner and problem solver, you need to be able to function both ways. If you overemphasize intuition, you may miss important details or make careless mistakes in calculations or hands-on work; if you overemphasize sensing, you may rely too much on memorization and familiar methods and not concentrate enough on understanding and innovative thinking.

How can SENSING learners help themselves?

Sensors remember and understand information best if they can see how it connects to the real world. If you are in a class where most of the material is abstract and theoretical, you may have difficulty. Ask your instructor for specific examples of concepts and procedures, and find out how the concepts apply in practice. If the teacher does not provide enough specifics, try to find some in your course text or other references or by brainstorming with friends or classmates.

How can INTUITIVE learners help themselves?

Many college lecture classes are aimed at intuitors. However, if you are an intuitor and you happen to be in a class that deals primarily with memorization and rote substitution in formulas, you may have trouble with boredom. Ask your instructor for interpretations or theories that link the facts, or try to find the connections yourself. You may also be prone to careless mistakes on tests because you are impatient with details and don’t like repetition (as in checking your completed solutions). Take time to read the entire question before you start answering and be sure to check your results.

Visual and Verbal Learners

• Visual learners remember best what they see—pictures, diagrams, flow charts, time lines, films, and demonstrations.

• Verbal learners get more out of words—written and spoken explanations.

• Everyone learns more when information is presented both visually and verbally.

In most college classes, very little visual information is presented: students mainly listen to lectures and read material written on boards and in textbooks and handouts. Unfortunately, most people are visual learners, which means that most students do not get nearly as much as they would if more visual presentation were used in class. Good learners are capable of processing information presented either visually or verbally.

How can VISUAL learners help themselves?

If you are a visual learner, try to find diagrams, sketches, schematics, photographs, flow charts, or any other visual representation of course material that is predominantly verbal. Ask your instructor, consult reference books, and see if any videotapes or CD-ROM displays of the course material are available. Prepare a concept map by listing key points, enclosing them in boxes or circles, and drawing lines with arrows between concepts to show connections. Color-code your notes with a highlighter so that everything relating to one topic is the same color.
How can VERBAL learners help themselves?

Write summaries or outlines of course material in your own words. Working in groups can be particularly effective: you gain understanding of material by hearing classmates’ explanations and you learn even more when you do the explaining.

Sequential and Global Learners

- Sequential learners tend to gain understanding in linear steps, with each step following logically from the previous one. Global learners tend to learn in large jumps, absorbing material almost randomly without seeing connections, and then suddenly “getting it.”

- Sequential learners tend to follow logical stepwise paths in finding solutions; global learners may be able to solve complex problems quickly or put things together in novel ways once they have grasped the big picture, but they may have difficulty explaining how they did it.

Many people who read this description may conclude incorrectly that they are global, since everyone has experienced bewilderment followed by a sudden flash of understanding. What makes you global or not is what happens before the light bulb goes on. Sequential learners may not fully understand the material but they can nevertheless do something with it (like solve the homework problems or pass the test) since the pieces they have absorbed are logically connected. Strongly global learners who lack good sequential thinking abilities, on the other hand, may have serious difficulties until they have the big picture. Even after they have it, they may be fuzzy about the details of the subject, while sequential learners may know a lot about specific aspects of a subject but may have trouble relating them to different aspects of the same subject or to different subjects.

How can SEQUENTIAL learners help themselves?

Most college courses are taught in a sequential manner. However, if you are a sequential learner and you have an instructor who jumps around from topic to topic or skips steps, you may have difficulty following and remembering. Ask the instructor to fill in the skipped steps, or fill them in yourself by consulting references. When you are studying, take the time to outline the lecture material for yourself in logical order. In the long run doing so will save you time. You might also try to strengthen your global thinking skills by relating each new topic you study to things you already know. The more you can do so, the deeper your understanding of the topic is likely to be.

How can GLOBAL learners help themselves?

If you are a global learner, just recognizing that you aren’t slow or stupid but simply function differently from most of your classmates can help a great deal. However, there are some steps you can take that may help you get the big picture more quickly. Before you begin to study the first section of a chapter in a text, skim through the entire chapter to get an overview. Doing so may be time-consuming initially but it may save you from going over and over individual parts later. Instead of spending a short time on every subject every night, you might find it more productive to immerse yourself in individual subjects for large blocks. Try to relate the subject to things you already know, either by asking the instructor to help you see connections or by consulting references. Above all, don’t lose faith in yourself; you will eventually understand the new material, and once you do, your understanding of how it connects to other topics and disciplines may enable you to apply it in ways that most sequential thinkers would never dream of.
V. Keys to Youth Development

(Konopka 1973, Pittman 1991)

These are critical elements that are found to be essential to the healthy development of young people.

1. Security
 Children feel physically and emotionally safe.

 Young people will learn better and participate more fully with us when they feel safe. There must be respect and trust established among all the children, mentors, and family leaders involved.

2. Belonging
 Children experience belonging and ownership.

 Children feel included. They have significant roles and their “voice” and ideas are heard. Mentees need to be part of the decision-making teams to choose field trips, family outings, and community service projects.

3. Acceptance
 Children develop self-worth.

 Children feel free to contribute. Their contributions are accepted, acknowledged, and appreciated by their peers and by mentors.

4. Independence
 Children discover self—talents, skills, dreams, hopes.

 Children are encouraged to try new things and to learn about themselves. As a result, they discover their talents, interests, passions, and skills. They experience independence and taking control of their own lives. They experience personal power as they see they have control over things that happen to them and can choose things and people to get involved with.

5. Relationships
 Children develop quality relationships with peers and mentors.

 Children develop caring and trusting relationships. Children and adults learn together and respect one another. Children heighten their relationships with themselves—“I like me. I know who I am.”

6. Values
 Children develop or form their own personal values.

 Children share and explore their own values and an express their ideas, feelings, beliefs about topics that are important to them. In turn, children are able to listen with respect to the values expressed by other peers and mentors.

7. Achievement
 Children feel the pride and accountability that comes with mastery.

 Children experience success by completing activities appropriate for their stage of development and preferred learning style. Children learn to set goals, to understand their various basic skill levels and needs, to ask for help, to communicate with teachers and counselors, to feel the pride of meeting goals and experiencing “academic success.”

8. Recognition
 Children expand their capacity to enjoy life and to know that success is possible.

 Through our mentoring relationships and program, children are offered new experiences and opportunities. They learn and grow from successes and failures. They expand their capacity to enjoy life and know that personal “success” is possible. They know they are precious and special to us.
VII. Wrap-Up

A. Logistics

1. Mentor’s commitment (2 hours per week for a semester)
 Frequency of sessions decided by you and your child(ren)
2. Carpooling/Transportation- Let your Family Leader know if you can drive!
3. Personal Problem Resources: www.reachoutmichigan.org
 If you are worried about your mentee (drugs, alcohol, suicidal tendencies, etc.), please consult Jeannine for advice!
4. Be sure to establish E-mail groups for Family Leaders and Mentors

B. Just for Fun

• Brainstorm activities we would like to do during the semester among ourselves
• Activities with our children

C. A Few Final Thoughts

We can’t provide our children with quick fixes and answers to the problems they are facing in their lives. We are not genies in a lamp! We are here to help our children grow and gain self confidence and to learn that….

• We are each uniquely gifted and possess many talents.
• We all can learn. We all can learn any subject. We all can learn for understanding instead of just memorization.
• We each have our own learning styles, which do not always match up with the way schools and training programs teach us or evaluate what we know.
• The answers that they seek are within themselves. All they have to do is spend some time looking for them.
• There are many careers out there that can be enjoyable and utilize their unique combination of gifts, skills, and traits.
• Each of us has one life to live and we have to live it for ourselves, not for anyone else.

As you mentor your child(ren), remember to be flexible. These materials are resources are for you. Be sure to make necessary alterations so you are truly catering to the needs of your child. We wish there were a cookbook recipe we all could use. However, every student is unique and has individual needs. Every mentor is unique, too, and has different experiences and gifts to offer. We are here for you! Let us know how we can help you be the best mentor possible for your child!
Reach Out!

A Center Linking University of Michigan and Community Mentors with Children and Teens

Science Club Volunteer Mentor Agreement

Fall 2004

Contact Information:

<table>
<thead>
<tr>
<th>name (please print)</th>
<th>e-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>local phone</th>
<th>cell phone</th>
<th>work phone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>local address</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Organization: employer, college/university, high school, etc. major, if appropriate

UM or EMU student organization, if appropriate year in school, if appropriate

Demographics: gender ___ birthdate (mo/date/year) ________________ race ________

Site:

- Pinelake Village Community Center – M Monday, 4:30–5:50 PM
- Pinelake Village Community Center – T Tuesday, 4:30–5:50 PM
- Mitchell Elementary School - M Monday, 11:10 AM–12 noon
- Mitchell Elementary School - W Wednesday, 11:10 AM–12 noon
- Hikone Recreation Center Thursday, 6–7 PM

Availability over the next year:

- I will need transportation to my site
- I am willing to carpool with others in my vehicle
Volunteer Mentor Code of Conduct

The purpose of this Code of Conduct is to ensure the safety and well-being of all participants. Mentors will:

- Accept responsibility for representing the Michigan Reach Out! and/or the University of Michigan and Eastern Michigan University with dignity and pride by being a positive role model for youth.
- Conduct themselves in a courteous and respectful manner.
- Not consume alcohol or illegal drugs before or during work with children.
- Work with young people only at the designated places—supervised classrooms at Scarlett Middle School.
- Not take their mentees on outings without prior arrangement with Reach Out! site leader and school authorities and written permission from parents (Note that it is not advisable to transport children in your private automobile).
- Accept no monetary compensation for services provided.

It is important that all volunteers comply with the Code of Conduct. Failure to comply with any component of the code may lead to dismissal from the Mentoring Program.

I will try to notify Reach Out! staff at least two weeks in advance if I am unable to continue mentoring.

I agree to comply with this Code of Conduct. I authorize the University of Michigan and Michigan Reach Out! to make and use photo/video images of me for educational and promotional purposes.

SIGNATURES:

Mentor
Date

Driver’s License #
State of Issue

Staff Person
Date

Thank you for caring enough to try to make a difference!